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Field expressions valid near the caustic of a two dimensional Gregorian system of perfect electromagnetic conductor 
backed by chiral nihility material are derived using Maslov’s method. Numerical computations have been made to work out 
the field patterns around the caustic of a Gregorian system. Reliance of cross-polarized and co polarized field components 
for various values of admittance factor of perfect electromagnetic conductor have been studied and interesting results have 
been highlighted 
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1. Introduction 
  
Electromagnetic waves found in the focal region of 

focusing system have many applications in areas, such as 
microwave antennas and integrated optical systems etc. 
Geometrical optics approximation is a usual technique for 
obtaining high frequency fields in homogeneous and 
inhomogeneous medium but it does not give results in the 
neighborhood of caustic area. So an alternative method is 
needed to overcome this discrepancy which is Maslov 
method. Maslov's method predicts field in the focal region 
[1, 2]. This method combines the simplicity of GO and 
generality of the Fourier transform method in his 
procedure. This technique made use of the fact that 
singularity in different domains does not coincide. Hence 
by representing the GO fields in terms of mixed 
coordinates space coordinates and wave vector coordinates 
can provide the remedy to find the solution at caustic. 
Maslov's method has been used for variety of reflector by 
many authors [2-20]. 

Chiral nihility is a material  obtained from chiral 
material with the real part of permittivity and permeability 
simultaneously having zero values, in other words 
refractive index becomes zero at certain frequency known 
as chiral nihility frequency [21-27].  

PEMC is combination of Perfect electric conductor 
(PEC) and perfect magnetic conductor (PMC) in 
generalized form. At PEMC interface certain linear 
combination of electromagnetic fields are required to 
vanish and has been discussed in [28-35] . This medium is 
also termed as the axion in the literature. This generalized 
media does not allow any type EM energy to enter, so it 
can act as boundary material. Non-reciprocity of the 

PEMC boundary can be demonstrated by showing that the 
polarization of plane wave reflected from its surface is 
rotated, the sense and angle of rotation depending on the 
admittance parameter.  

In present work, we have derived high frequency field 
expression which is valid in the caustic region of the 
PEMC backed chiral nihility Gregorian system (a kind of a 
dual reflector antenna) by using Maslov's method.  Effect 
of the PEMC parameter on the field amplitude in 
directions along the coordinate axis is noted. Interpretation 
of the results is given taking into account the co and cross 
polarization of field patterns. 

 
 
2. Two dimensional Gregorian reflector 
 
 The Gregorian reflector system comprises of 

parabolic as main reflector (chiral nihility coated material 
backed by PEMC material, in present discussion) and 
elliptical (PEC) as sub reflector shown in Fig. 1.  
Gregorian system has many benefits over a parabolic 
reflector. The Gregorian system can be replaced with a 
single equivalent parabolic reflector with the same 
aperture as that of main reflector but enhanced focal 
length. The focal length of equivalent parabola is given by 
the following relation [36]  
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where ( ) / ( )c a c a  is known as the image field 

magnification.  Thus in the presence of secondary reflector 
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the focal length of the main reflector is increased while 
providing a convenient location of feed near the vertex of 
the parabola [37].  
 

 
Fig. 1. Parameters in Gregorian system 

 
 

In addition to the ability to place the feed at a 
convenient location, additional benefits of Gregorian 
system include, to reduce spill-over and side-lobe 
radiation. The equation of each reflector is given by 
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where  
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where 1 1( , )   and 2 2( , )   are the coordinates of the 

parabolic and elliptic reflectors, respectively. 1R  and 2R  

are the distances from the point 2 2( , )   to the focal 

points z c   and z c  respectively. Incident wave is 
given by Ei = ux 0exp( )ik z . Thus the GO expression of the 

reflected wave is  

Er = Er 0
1/ 2

0 1exp[ ( )]J jk S t t     (4) 

where 
2

1
t

J
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  . It is freely observed that the GO field 

of the reflected wave becomes invalid at the point F2 as is 
expected [5]. Using Maslov’s method  electromagnetic 
reflected field in the focal point is obtained as   
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The phase function ( )zS p is given by [5] 
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Field expression may be written as 
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where coA and crA  are values of the co-polarized 

reflected fields given as [27] 
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and 2 2 2
y zk k k  where k   at the nihility 

frequency and  is chirality parameter. It has been 
assumed that the impedance of chiral nihility medium is 

closed to the surrounding medium ( 0  ). In above 

equation, 0 0 0k    , 0zk and yk satisfy the 

following dispersion relation 2 2 2
0 0y zk k k  . 

When M    (PEC), 0crA  , 1coA   , therefore 

(6) becomes 
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In the above equation 1R , 0S , 1t  and exS  are expresses in 

terms of  and 1A , 2A are the subtention angles 2 at 

the edges of the parabolic and elliptic cylinders. It may be 
noted that limits of the integrals in equation (6) are 
determined using the following relations [5] 
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where D and d are the apertures of the apertures of the 
main reflector and sub-reflector respectively.  
 
 

3. Numerical results and discussion 
 
In the preceding section computational results of co-

polarized and cross-polarized components of the reflected 
field, given by Eq. (6), along the reflector axes are shown 
in Fig. 2-5. The aperture of the reflector is chosen as 17λ. 
It has been observed that admittance parameter M  

affects the amplitude of the reflected field while pattern 
remains the same. Plots have been obtained for different 
values of M . It has been observed that for 1M   , 

cross component of the reflected field is maximum, while 
co polarized component is zero. For M=2, the amplitude 

of co polarized component is greater than the cross 
polarized component and the behavior is reversed for M  

= 3. For M  > 3, the amplitude of the cross component 

decreases and finally vanishes for large values of M . It 

can also be seen that for M  = 0 and M   cross 

polarized components of the reflected field disappear 
which represent the chiral nihility reflector backed by 
PMC and PEC material respectively, which is in 
accordance to our analytical formulation. In Fig. 5, we 
compared the results of PEMC backed chiral nihility 
reflector with that of PEC backed chiral nihility reflector. 
The results are in good agreement. In Fig. 6, co and cross 
polarized components of reflected fields are shown against 
admittance parameter which again endorses our earlier 
results. 

 

 
 

Fig. 2 (a). Cross and co polarized field reflected  
from system for M  = 0, versus ky 
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Fig. 2 (b). Cross and co polarized field reflected from 

 system for M  = 0, versus kz 

 

 
Fig. 3 (a). Cross and co polarized field reflected from  

system for M  = 1, versus ky 

 

 
Fig. 3 (b). Cross and co polarized field reflected from  

system for M  = 1, versus kz 

 

 
Fig. 4 (a). Cross and co polarized field reflected from  

system for M  = 3, versus ky 

 

 
Fig.  4 (b). Cross and co polarized field reflected from  

system for M  = 3, versus kz 

 

 
Fig. 5 (a). Cross and co polarized field reflected from  

system for M  , versus ky 
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Fig. 5 (b). Cross and co polarized field reflected from  

system for M  , versus kz 

 

 
 

Fig. 6. Cross and co polarized field reflected from system 
versus M  for fixed reflector axis i.e. kz=ky=5 

 
 

4. Conclusion 
 
The results presented demonstrate that the Maslov's 

method is straightforward remedy and provides an 
alternate tool to conventional GO method for evaluating 
diffraction field in the caustic region of focusing systems. 
In this work a dual reflector antenna called Gregorian 
system is studied. The important task of the work is the 
effects of material parameters (PEMC and chiral nihility) 
used in this system.  

We have started from M  = 0 (PMC) boundary and 

observed that field is rotated giving rise to increase and 
decrease in the amplitude of co and cross components for 
different values of M . Finally, we reach M   

(PEC boundary). These findings may find potential use in 
some applications where controlled intensity of co and 
cross polarized field is required. Another striking feature 
can be seen that the factor thickness didn't appear in the 
expression of the reflected field. It means that the 
thickness of the reflector coating is irrelevant. It is perhaps 
due to the fact that in chiral nihility material, the two 
eigen-waves are circularly polarized but one of them is a 
backward wave. 
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